

FETPROACT-2019

MARILIA deliverable: Report on generation of peptide-DNA conjugates Deliverable number: D2.1

MARILIA

MARA-BASED INDUSTRIAL LOW-COST IDENTIFICATION ASSAYS

Project nr: 952110 Call reference: H2020-EIC-

Start date: September 1st, 2020. Duration: 30 months

Deliverable identification

Leading beneficiary: RBI Planned delivery date: M15

Related WP: WP 2 Actual delivery

Dissemination level: Confidential Actual delivery 2.3.2022

Contributor(s)' name(s)
Ivo Piantanida
Željka Ban
Ivo Crnolatac

Deliverable Reviewers		
Version	Reviewer	Date
1.0	Ivan Barišić	1.3.2022

MARILIA GA number 952110

Table of content

1.	Conf	text and objectives	2
2.	Desc	cription of the performed tasks and obtained results	2
	2.1	Modification of peptide thiolo group	2
	2.2	Modifications of peptide amino groups	4
	2.2.1	1 NHS ester modification	5
	2.2.2	2 Azido modification of amino group: diazotransfer reaction	5
	2.2.3	3 Acrylate modification of amino group	9
	2.3	Generation of BBP peptide-DNA conjugates	10
	2.3.1 with	Activation of peptide cysteine with bifunctional crosslinker maleimide-DBCO followed by reazido-oligonucleotide (Figure 7)	
		2 Activation of peptide C-terminus carboxyl group with EDC/sulfo-NHS followed by reaction no-oligonucleotide	
3.	Cond	clusion	12
4.	FXP	PERIMENTAL PROCEDURES FOR PEPTIDE MODIFICATIONS	14

1. Context and objectives

In MARILIA, we planned the development of horseradish peroxidase (HRP)-DNA barcoded components and conjugating them to bacteria-binding proteins (BBP), aiming toward selective targeting of particular pathogens in water. In parallel, a methodology for peptide (for instance BBP) – DNA conjugates had to be developed.

Thus, we had to optimize the DNA methodology on a simple peptide-DNA conjugate level, to have a good starting point for HRP-DNA tethering, as well as BBP-DNA conjugates with retained antibacterial activity and selectivity.

There are several strategies for the covalent connection of peptides and/or proteins to DNA oligonucleotides. The two most attractive amino acid residues available for modification are cysteine and lysine because of their high reactivity.

Therefore, we investigated:

- 2.1. Modification of peptide thiolo groups (cysteine residues)
- 2.2. Modification of peptide amino groups (lysine residues and/or N-terminus)